## Advanced Math Structures Quiz 1

August 28, 2019



- ▶ Keep bags, mobiles and other items outside or near the board.
- Find a seat with an answer sheet kept. Write name, roll number at the top of the answer sheet.

▲ロト ▲帰 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q @

- Solve any 2 problems. Stop at 840AM.
- ▶ No additional sheets will be given.

**Q1.** A function  $f : [m]^k \to [n]$  is symmetric if for all  $x, y \in [m]^k$  such that y can be obtained by permuting x (using a permutation in  $S_k$ ), f(x) = f(y). Find the number of symmetric functions in terms of m, n, k.

**Q2.** Let  $n \ge 2$  be a positive integer with prime factorization  $n = p_1^{e_1} . p_2^{e_2} ... p_k^{e_k}$ . The Euler totient function is defined by

 $\phi(n) = |\{m : m < n \text{ and } gcd(m, n) = 1\}|.$ 

Show using inclusion exclusion that

$$\phi(n) = n \prod_{i=1}^{k} \left( \frac{p_i - 1}{p_i} \right).$$

**Q3.** Let k be prime and  $\mathcal{F} = \{f : [m]^k \to [n]\}$ . g is a cyclic reordering of f, if  $\exists i \in [k]$  such that  $g(x) = f(\sigma^i(x))$  where  $\sigma^i(x) = x_i \cdots x_n x_1 \cdots x_{i-1}$ . Find the number of distinct functions in  $\mathcal{F}$  if cyclic reorderings are considered the same. Use this to show that k divides  $n^{m^k} - n^t$  where  $t = \frac{m^k - m}{k} + m$ .

**Q4.** Let  $A_1, ..., A_k \subseteq [n]$ . For  $S \subseteq [k]$ , let  $A_S = \bigcap_{i \in S} A_i$  and  $A_{\phi} = [n]$ . Then for  $0 \leq r \leq k$ , show that

1. For odd r,  $\left|\overline{\bigcup_{i \in k} A_k}\right| \ge \sum_{S \subseteq [k]:|S| \le r} (-1)^{|S|} |A_S|.$ 2. For even r,  $\left|\overline{\bigcup_{i \in k} A_k}\right| \le \sum_{S \subseteq [k]:|S| \le r} (-1)^{|S|} |A_S|.$  Thanks

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 - のへの