PROBABILISTIC GRAPHICAL MODELS MID SEMESTER EXAM

Instructor: Girish Varma • Course Code: MA5.401• IIIT Hyderabad Solve 3 of 4 problems

1 Ising Model on Graphs

Consider a directed graph $G(V \cup \{s,t\}, E)$ (*V* is the vertex set with $|V| = n$ and *E* is the edge set). For every vertex $i \in V$, associate a spin random variable X_i taking values in ${-1, +1}$. The energy of a configuration $x = (x_1, \dots, x_n)$ is given by

$$
H(x) = -\sum_{(i,j)\in E} x_i x_j - \sum_{(s,i)\in E} x_i + \sum_{(i,t)\in E} x_i.
$$

- a.) For $n = 3$ and the graph being a chain (ie. $E = \{(1, 2), (2, 3), (s, 1), (3, t)\}\)$, write down the probability of the configuration $(+1, +1, -1)$ under the Boltzmann's Distribution at temperature $T = 10$. (1)
- b.) Let $y = (-1, +1, -1, +1, \cdots, (-1)^n)$. What is the probability of the configuration *y* in the Boltzmann's distribution as $T \rightarrow \infty$? **(1)**
- c.) Consider the graph with the directed edges given by $E = \{(i, j) : i < j$ where $i, j \in$ $\{1, \dots, n\}$ \cup $\{(s, 1), (n, t)\}$. Describe the Boltzmann's distribution as $T \rightarrow 0$? **(1.5)**
- d.) Derive that the ground states (maximum probability states) are given by the Minimum $s - t$ cut in the graph. **(1.5)**

2 MCMC Sampling

Consider an undirected graph $G(V, E)$. Consider random variables X_i for $i \in V$ (one each for every vertex) taking values in $\{1, \dots n+1\}$ with the potential function (of the Markov Network) being

$$
p(x) \propto \prod_{(i,j)\in E} \phi(x_i, x_j) \prod_{i\in V} x_i \quad \text{where} \quad \phi(a, b) = \begin{cases} 1 & \text{if } a \neq b \\ 0 & \text{otherwise} \end{cases}.
$$

- a.) Describe the highest and 0 probability states in the distribution where the graph is a 3×3 grid (9 variables). **(1)**
- b.) Describe a Markov Chain (MC) with states space $\Omega = \{1, \cdots, n+1\}^{|V|}$, with transitions between states $x, y \in \Omega$ only possible if they differ in at most 1 coordinate such that there is a path from any *x* to any *y*. (1.5)

c.) What should be the transition probabilities such that the stationery distribution of the chain is the distribution described above? (need to give transition probabilities, derive the stationery distribution) **(2.5)**

3 Tail Bounds

Suppose we throw *m* balls into *n* bins (uniformly and independently). Balls {*i*, *j*} is said to *collide* if they fall into the same bin. Let *Xm*,*ⁿ* be the random variable corresponding to the number of collisions and $\mu_{m,n}$ be its expected value.

a.) Show that
$$
\mu_{m,n} = \binom{m}{2} \frac{1}{n}
$$
. (1)

b.) Using Chebyshev's inequality show that

$$
\Pr[|X_{m,n} - \mu_{m,n}| \ge c\sqrt{\mu_{m,n}}] \le \frac{1}{c^2}.
$$
\n(2)

c.) Let *m* < √ *n*. Use Chernoff's bounds plus the union bound to show that the probability that no bin has more than 1 ball is at least $1 - n \cdot 2 \cdot e^{-m/8}$. **(2)**

4 Message Passing

Consider the distribution given by

$$
p(v_1, \cdots, v_T, h_1, \cdots, h_T) = p(h_1)p(v_1 \mid h_1) \prod_{i=2}^T p(v_i \mid h_i)p(h_i \mid h_{i-1})
$$

where the domains of h_i 's is $\{1, \cdots, H\}$ and v_i 's is $\{1, \cdots, V\}$.

- a.) Draw Belief Network for the above distribution. **(1)**
- b.) Draw factor graph representation for the above distribution. **(1)**
- c.) Use the factor graph and message passing to obtain an algorithm with running time $O(TH)$ for computing $p(h_1 | v_1, \cdots v_T)$. (1.5)
- d.) Use the factor graph and message passing to obtain an algorithm with running time $O(T(H + V))$ for computing $p(h_1 | v_T)$. (**1.5**)